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Overview of Possible Crevice Environments 
for IGA/IGSCC in Alloy 600MA

> Introduction

> Background : crevice environments

> Background   EDF caustic model

EDF near-neutral sulfates

EDF/FRA/CEA near-neutral complex environments 

> Summary 

> Discussion of liquid / steam environments

> Future plans
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Introduction : Causes of Steam Generator 
Tube Plugging in France in 1999

·Only Mill Annealed Alloy 
600 tubes are affected so far 
in France but Thermally 
Treated Alloy 600 has 
started to crack in the USA

·Secondary water chemistry
management
is strongly influenced by the 
tube corrosion issue.

Plugged tubes in France in 1999
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IGA/IGSCC of Alloy 600 SG tubes:
Analysis of operating experience 1

> In France, IGA/SCC in plants with 600 MA 
< drilled TSPs, one with broached TSPs in C-steel (axial cracks)

< Above the tubesheet TS (small axial cracks) in the sludge pile

< Under the top surface of the TS (circonf. cracks)

< Very limited TGSCC (Pb identified)

> No cracking with 600 TT and 690 TT

> IGA/IGSCC related to hide-out of impurities in 
crevices under heat transfer conditions in flow-
restricted areas
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IGA/IGSCC of Alloy 600 SG tubes:
Analysis of operating experience 2

> Inspections of large populations of tubes available for 
statistical analysis but rather few parametric trends 
can be discerned

> Strong heat to heat variability 

> Some trends with strength and/or carbon content are 
observed for some tube bundle manufacturers with 
lower strength materials apparently more susceptible
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IGA/IGSCC of Alloy 600 SG tubes : 
Analysis of operating experience 3
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Background : crevice environments

> Crevice environments poorly characterized

> IGA/SCC traditionally linked to the formation of 
concentrated caustic or acid sulfate solutions whose 
boiling point is raised sufficiently to be in equilibrium 
with the available superheat of up to 30-35°C

> Many investigations in the past in caustic and acid
sulfate
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Background : Alloy 600 in Caustic and Acid 
Sulfate - Laboratory Data

> Only limited data in the range 5 < pHT < 9.5 in concentrated solutions

(see Airey)
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Background : EDF caustic model 1

> IGSCC model in laboratory :
Stress threshold for initiation Propagation

σ > 185 MPa

σs = 0.55(YS) + 82
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Background : EDF caustic model 2

> 600 MA :

< the model explains the main features of the cracking 
(location, orientation)

<Slow propagation rate : see next slide

<No rapid propagation expected

> 600 TT : better behavior predicted, only circonf. cracking 
possible at the upper surface of the tubesheet

> 690 TT : no cracking expected
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Background : EDF caustic model 3

> Coupling the corrosion model with chemistry
deduced from hideout return data

• The calculated (slow) CGRs are consistent with
average CGRs from pulled tubes on 8 of the oldest
plants (river side) for the first decade of operation

• However, they are always lower than the CGRs
measured in plants

• The model is not applicable to 3 other (sea side) 
plants

To be improved (reassessment of Twall, sludge porosity)
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Background : EDF caustic model 4

> Coupling corrosion model (600 MA) with pH deduced with
hideout return data

CREVICE CHEMISTRY

n Evolution of pHMULTEQ with time for 2 plant units
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Background : EDF caustic model 5

> Coupling corrosion model with pH deduced with hideout return data
• 8 river side plants

• 3 sea side plants : not alkaline
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Neutral to slightly alkaline sulfates 1

> Hideout return data : sulfates are the main pollutants

> Surface analysis : Cr/Ni on pulled tubes consistent 
with slightly alkaline environment

> Laboratory investigation (EDF)
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Neutral to slightly alkaline sulfates 2

> Initiation : σ > 215 MPa (required YS)

[SO4] = 0.05 M, pH = 6.5, T = 320°C, C-rings, 2500 h
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Neutral to slightly alkaline sulfates 3

> Slow propagation Experimental Design
> slow CGR (MA) = a + b.T + c.[SO4] - d.pH +e.T.pH- f.T2 + g.pH2

> Pareto diagram :
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Neutral to slightly alkaline sulfates 4

Effects of pH and [SO4] for T = 320°C Effects of pH and T for [SO4] = 0.32 M
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Neutral to slightly alkaline sulfates 5

> 600 MA : the sulfate model 

< Consistent with some cracking in plants (location, orientation), but 
not all

< Provides slow CGRs compatible with plant CGRs at [SO4] > 5000 
ppm (pH = 6) or = 31 000 ppm (pH = 8) at 320°C 

< Reassessment of true Twall and coupling of the model with HOR 
data in progress

> 600 TT predicted to be slightly better

> 690 TT immune
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Complex environments 1

> Background :

> IGA/IGSCC of mill annealed alloy 600 tubes  associated with the 
presence of alumino-silicate deposits (zeolites) overlying brittle 
poorly protective chromium hydroxide films instead of protective 
spinel.

> Recent high resolution ATEM work on IGA/IGSCC in alloy 600MA acid 
formed in acid sulfate or strong caustic do not show the same 
morphology as observed on those pulled tubes examined to date.
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Complex environments 2

> Deposits at TSPs on pulled tubes :
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Complex environments : 3

> Specimens  / examination

< EDF : at least 2 C-rings/environment and metallurgical condition

< CEA : U-bend specimen 
• σ > YS - surface state: as-received (AR)

• Metallurgical examination on section (max ∆a) + SEM / EDS

< Flat coupons, SEM/EDS, GDOS

> Test facilities

< EDF: Static SS autoclaves, 1 or 4 liters

< CEA : heated capsules (alloy 600TT) in an autoclave

> Duration of the tests

2500 h to 4000 h
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Summary of Recent Results on IGA/IGSCC of 
Alloy 600 in Complex Mixtures of Impurities

> Classical detrimental effects:

< pH<5 or pH>10 at 
temperature

< Presence of SO4
-- at pH<5 

and HS-/S-- at pH>10

< Presence of Fe3O4 & CuO

> Beneficial effects:

< SiO2 and Ca3(PO4)2 as 
chemical buffers or forming 
solid barrier deposits

< CuO only in presence of 
sulfides

Various combinations of impurities added to pure water studied 
using optimized experimental designs: NaOH, Na2SO4, Na2S, 
CH3CO2H, CO2, Fe3O4, SiO2, Al2O3, CuO, Ca3(PO4)2

pH range of the various mixtures at 325°C was 3.3 to 10.3

One really surprising result where rapid (0.2µm/h) through-wall 
cracking was observed with CuO+SiO2+Al2O3 but not with CuO alone
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IGSCC of Alloy 600 as a Function of pH in 
Complex Mixtures of Impurities
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IGA of Alloy 600 as a Function of pH in 
Complex Mixtures of Impurities
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Experimental Plan and Results based on 
Pulled Tube Deposit Analyses

Impurities in AVT Secondary Water pH
325°C

Deepest crack, µm

Run

Si
Al

(A)
-1 level=0.1
+1 level=1.0

CuO

(B)
-1 level=0

+1 level=0.128M

Ca3(PO4)2
+ (100ppm CH3COOH)

(C)
-1 level=0

+1 level=0.0064M
+2 level=0.064M

Heat
WF 422

Heat
9861

69* -1 -1 -1 5.5 0 0
70 +1 -1 -1 5.5 100 150
71 -1 +1 -1 5.9 0 0
72 +1 +1 -1 5.9 0 635
73 -1 -1 +1 5.1 120 120
74 +1 -1 +1 5.1 70 200
75 -1 +1 +1 5.3 0 0
76 +1 +1 +1 5.3 0 0
77 -1 -1 +2 4.8 5 5
78 +1 -1 +2 4.8 100 100
79 -1 +1 +2 5.1 0 0
80 +1 +1 +2 5.1 0 0

* Note: repeated experiment by EDF →15 µm 

> Second Experimental Design in AVT environment
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IGA/IGSCC of Alloy 600MA in the presence 
of alumino-silicates in AVT water

Combination +1-1-1
Note: 1- IGA/IGSCC observed only in AVT water in the absence of CuO

2- Recent EDF tests show that organics are not a necessary condition for cracking

+1-1+2 +1+1+2

-1+1+2-1-1+2

-1-1+1

+1-1+1

-1+1+1

+1+1-1+1-1-1

-1+1-1
-1-1-1

Si
Al

 (A)

Ca3(PO 4)2 +  100ppm CH3COOH (C)

0120

00

0200

635150

 +1 +1+1 

CuO (B)

0

0100

5

IGA/IGSCC

IGSCC

No cracking

depth
(µm)

depth
(µm)
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IGA/IGSCC of Alloy 600MA in the presence of 
alumino-silicates in AVT water

> Recent EDF data for polluted AVT (de-aerated ammonia solution 
+ 2 ppm hydrazine, pHRT 9.2) 

environment simple simple without silica complex 

parameter Al/Si w/o alumina w/o phosph. reference amine w/o organic amine 

Test 
Environ-

ment 

AVT + SiO2  
+ Al2O3 

AVT 
+  

Ca3(PO4)2 
+ CH3COOH 

AVT  
+ Al2O3 

+ 
CH3COOH 

AVT + SiO2  
+ Al2O3 + 

Ca3(PO4)2+ 
CH3COOH 

idem but 
morpholine 
instead of R 

AVT + SiO2  
+ Al2O3 

+ Ca3(PO4)2 
 

idem  but 
morpholine 
instead of R 

pH320 
MulteQ* 

5.9 5.2 4.1** 5.2 5.3 5.4 5.2 

Test 
duration(h) 

3000 2473 2500 3191 4000 4000 4000 

SCC 0.005 µm/h 0.01 µm/h No Cracking 0.01 µm/h   0.01 µm/h 0.03 µm/h 0.01 µm/h 

Deposit continuous 
AlSi no granular Al continuous Si - - - 

Non 
protective 

Cr-rich layer 
? yes 

Fe, Cr  
yes 

Cr, Fe 
yes 

Cr, Si - - - 

*   Al2O3 not in MulteQ data base : calculated with Al 
** CH3COOH concentration : 10 000 ppm instead of 10 ppm 
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Alumino-silicate deposits (Zeolites)

> Very wide range of compositions is possible in which the substitution of 
species such as aluminum, alkaline earths, phosphate and organic
species such as glycols controls their structure and reactivity ('acidity')

> Observed to selectively absorb certain transition metal cations from the 
passive film on alloy 600 and leave a non-protective chromium 
hydroxide gel that allows IGA/IGSCC to develop

> Organic ligands can be synthesized in the alumino-silicate deposits and 
may play a role in the partial breakdown of passivity that is the 
precursor to IGA/SCC. However, recent EDF tests show that organics
are not a necessary condition for cracking.

> Consequences for secondary water chemistry management?!

55



Heated Crevice Seminar, ANL, Argonne, October 7-11, 2002 29

Summary 1

> IGA/IGSCC in some old plants can be explained with the EDF 
caustic model (reassessment of Twall and influence of porosity in progress)

> However environmental chemistry associated with impurity 
hideout complex and still uncertain

> Local environments (hideout return data and surface analyses) are 
becoming less and less alkaline - neutral to slightly basic 

> Neutral to slightly basic sulfate environments could be relevant 
(but can they exist in the liquid state?)
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Summary 2

> Complex (liquid or wet steam) environments including SiO2, 
Al2O3, organics and phosphate can reproduce IGA/IGSCC and
deposits observed on pulled tubes (zeolites, formation of organic ligands 
to enhance dissolution of nickel)

> Thermally treated alloy 600 is more resistant than mill annealed
alloy 600 in all the near neutral environments tested and 
thermally treated alloy 690 is immune.
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IGA/IGSCC of Alloy 600 SG Tubes:
Do such concentrated liquids really form?

> Concentrations of dissolved species must be ~ 8 M to ensure a 
liquid phase with up to 30-35°C of superheat

< Recent tests show that only NaOH is sufficiently soluble to ensure a liquid 
phase at the SG pressure and >25 °C superheat

< Concentrated NaCl, for example, can only support 25°C of superheat 
before precipitating

< Impurity concentrations in SGs are probably only sufficient  to form droplets 
or a liquid film at most

> Crevice mouths fouled with very low porosity (<10%) deposits

< Possibility of local steam blanketing (polluted and/or hydrogenated 
steam?)
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Typical Fouled Tube/Drilled Tube Support
Plate Crevices

High density magnetite 
rich in silica.
High porosity 
magnetite and complex 
silicate deposits, which 
remain on pulled tubes

TSP

SG
 tu

be
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IGA/IGSCC in Steam or Aqueous Phase: 
Does it matter?

> Nano-porous (1 to 2 nm diameter with ATEM) deposits allow 
certain impurities, notably lead, copper and sulfur, to diffuse to 
the crack tip

> Liquid water and steam in a 2 nm diameter tube are unlikely to 
be distinguishable and transport to the crack tip is probably by
surface diffusion

> Kelvin's equation (which allows the vapor pressure of extremely 
small droplets to be calculated) shows that the boiling point of
pure water can be elevated by as much as 15°C (because of 
surface tension in very small diameter pores)
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Current and future R&D

> Further assessments in (neutral) sulfates and complex
environments

> Test program (FRA Owners' Group) in progress to test 
hypothesis of IGASCC in polluted superheated steam in plugged 
crevices 
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IGA/IGSCC of Alloy 600MA in the presence of 
alumino-silicates in AVT water
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PRIMARY OBJECTIVE OF THE
MEETING:

Predict Corrosion of Tubes
 in Modern SGs.
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REQUIRED TO PREDICT CORROSION

• Dependencies of submodes of corrosion on
primary variables:  pH, potential, species, alloy
composition, alloy structure, temperature, stress

• Definition of local environment immediately
adjacent to tube surface.

• Statistical framework.
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MAIN COMPONENTS OF PREDICTING
THE CORROSION BEHAVIOR OF
STEAM GENERATOR TUBING IN

MODERN PLANTS:

• Alloys 600TT and 690TT

• Line contact crevices and TTS

• High purity water
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PROBLEMS IN PREDICTION FOR
MODERN PLANTS

• Few failures of tubes

• No chemical, physical, nor phase
definitions of line contact crevices:  i.e.
the environment that produces corrosion

• Lack of definition for possible serious
SCC submodes including S-ySCC,
AcSCC, complex environments, and
PbSCC

• Lack of data and theory for interaction
of SCC species with immobilizing species,
e.g. Pb with sulfate.
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PROBLEMS IN CARRYING FORWARD
DRILLED HOLE EXPERIENCE

• Little direct evidence for causative
chemistries.

• Little agreement on the presence of steam
phase.

• Few data on corrosion in steam phase

• Few data on corrosion in complex
environments.

• Large variability of corrosion response for
constant conditions, i.e. Scott study.

• No (semi)-quantitative theory for local
chemistry.
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MY APPROACH

• Objective:  Predict first crack on secondary side
before detection by NDE.

• Scope:  Alloy 600MA, drilled hole,

• Basis:  Use existing data from Alloy 600MA
failures to calibrate and develop theory.

• Approach:

- Integrate statistical framework with physical
descriptions of the submodes from plant and
laboratory data for describing SCC.

- Evaluate integrated descriptions of submodes
with chemistry of drilled hole crevices.

• Validation:  Compare integrated theory with
known behavior of Alloy 600MA in drilled hole
crevices.

• Apply:  Present plants still with drilled holes
and Alloy 600.

• Modify:  Apply methodology to modern plants
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STEPWISE DEVELOPMENT

1. Assess the statistical nature of SCC in SGs and related applications and
environments.  [Done].  Conclude:

• Weibull format models SG data well and provides a good format for
prediction

• Space parameter , θ, and location parameter, to,  of Weibull follow same
patterns as mean values of experimental data

• Shape parameter, β, difficult to interpret and model.

2. Identify submodes of SCC (submodes depend differently on the primary
variables of pH, potential, species, alloy composition, alloy structure,
temperature, stress).  [Done].  Conclude:

• Sufficient data (more would be desirable) for modeling the primary variables
for:  AkSCC, LPSCC, AcSCC, PbSCC

• Need data for Sy-SCC

• Treating complex chemical environments not clear

• Presence and signficance of steam phase not clear.

3. Survey dependencies of submodes on primary variables.  [Done]

4. More detailed study of PbSCC.  [One short report done.  Detailed report
almost done]

5. More detailed study of oxidized sulfur and other acidic   species.  [Next
project]

6. More detailed study of reduced sulfur, Sy-SCC.  [The next after #5.]

7. Detailed study of chemistry of crevices using data from:  model boilers,
pulled tubes, collars (pieces of deposit from intersection of tube and tube
supports), hideout return.  Use “machine thermodynamics” for analyzing
data (evaluate MULTEQ, geochemist work bench, OLI) [Next]

8. Integrate all submodes using product of reliabilities.  [Next]

9. Integrate dependencies of submodes with chemistry of crevices.  [Final]
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Geometries of tube supports:  (a) Drilled hole typical of early Westinghouse
designs;  (b) egg crate typical of siemens and Combustion Engineering;  (c)
broached trefoil typical of Babcock and Wilcox;  (d) broached quatrefoil typical
of later Westinghouse designs.
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(1)

(2)

(3)

where:
θ = Space parameter or Weibull characteristic

to = Location papameter

β = Shape parameter

t = Time
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LPSCC of Alloy 600MA.  (a) Probability vs. time to fail by LPSCC for a temperature
range of 288 to 360°C for testing in high-purity deoxygenated water containing a
hydrogen concentration of 10-60 cc H2/kg H2O.  From Webb.  (b) Correlation of data
in (a) for θ, β, to vs. 1/T.  (c)  Probability vs. time to fail by LPSCC in high-purity
water and steam for 360°C water and 400°C steam with 1 psia hydrogen in the former
and 11 psia steam in the latter.  From Jacko.  (d) Correlation of data in (c) for θ, β, to
vs. 1/T.
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Cumulative Distribution Function
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1

β

Problem with β

(Dispersion α −− )

• β α stressor

or

• β α

4. Aggregate data reduces β

5. Testing near boundaries of SCC submode reduces β

3. Initiation and propagation mixed

• β = 1     for initiation

• β >1   for propagation

2. Dependence on physical processes

• β = 1   for surface processes (pitting, grain boundary, initiation of SCC)

• β >1, e.g., β = 4     for accumulation at surface or inside metal

1. Stressor dependence
Stressors:  T, σ, X, E, pH

1
stressor

1881



0 2 4 6 8 10 12

pH300°C

AcSCC

Ni

Ni++

Ni++

NiO

H2

H2O

NiO

ASSCC

PbSCC

ClSCC

DSSCC

CuSCC

S-ySCC

Cu = copper
Ac = acidic
Cl = chloride
DS = doped steam
Pb = lead
AS = alumino-silicates
S-y = reduced sulfur
Og = Organic
LT = Low Temperature

(b)

LTSCC

a

?OgSCC?

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50

-2.00

P
ot

en
ti

al
, V

H

0 2 4 6 8 10 12 14

pH300°C

O2

H  O2

NiO2

Ni  O3 4

NiO

H  O2
H2

Ni
++

Ni

Fe
++

Fe Fe  O3 4
Fe

3LPSCC
AkSCC

AcSCC

HPSCC

Ni(OH)

AkIGC

a

b
(a)

(a) Major submodes of SCC plotted with respect to coordinates of potential and pH for
significant reactions of Ni and Fe at 350°C.  Potential-pH relationships from Chen.  Extent
of the submodes based on experience from laboratory testing and reasonable interpolation
and extrapolations.  Submodes are applicable to Alloy 600 MA in the range of 300 to 350°C.
 (b) minor submodes of SCC for Alloy 600MA plotted with respect mainly to the NiO/Ni
half-cell equilibrium at 300°C.
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Dependencies of AkSCC on the primary variables.  (a) Tear area ratio vs. potential for Alloy 600MA and 690TT
on 10% NaOH at 300°C.  From Suzuki.  (b) Minimum time for inducing a crack in smooth surface specimens
vs. concentration of NaOH for various Fe-Cr-Ni alloys.  Specimens are C-rings stressed to approximately the yield
stress.  The original curves of Berge and Donati were redrawn, and data were added by McIlree.  Data points
added by McIlree were C-rings with 2% strain tested at 10% NaOH.  testing at 350°C.  (c) Crack depth vs. Ni
concentration for Ni-Cr-Fe alloys +0.02%C exposed to deaerated 10% NaOH solution at 325°C for 200 hours as
single U-bends.  Speciments are mill annealed.  From Nagano et al.  (d) IGSCC sensitivity of TT (700°C) Alloy
690 vs. MA, temperature and C constant in 10% NaOH, 350°C.  From Valliant et al.  (e) SCC propagation rate
vs. 1000/T for Alloy 600 MA in various concentrations of NaOH.  From Jacko.  (f) Stress vs. time for Alloy 600
in 10% NaOH at 288 and 316°C for Alloys 600 and 800.  From Wilson et al.
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The Immobilization of Pb
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Schematic Effect of Pb Concentrations as
They Affect SGs
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Fi(t) = Fi(θ, β, to)

θi, βi, toi
 = θi, βi, toi 

(E, pH, X, C, M, T, σ)

      where i = AkSCC, LPSCC, AcSCC, 
PbSCC, Sy-SCC

Application of primary variables to statistical parameters.
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Where:

FT  = Total probability, and where the subscripts refer
respectively to AkSCC, LPSCC, PbSCC and Sy-SCC
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Schematic view of heat transfer crevice at a tube support.
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Capillary liquid

SCC – capillary

Steam
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retrograde compounds.  Porous deposits with capillaries.
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Defining the Local Environment

• Morphology of deposits

• Chemistry of deposits

• Hideout return

• Blowdown chemistry

• Concentration relative to
bulk

• Analysis

• Laboratory experiments

Sources:

Need:  E, pH, X

Data from:

• EPRI Reports

• Direct measurements of
collars

• Utility reports

• Published literature

• Experiments
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